
Abstract- CT or MRI Medical imaging produce human body
pictures in digital form. Since these imaging techniques produce
prohibitive amounts of data, compression is necessary for
storage and communication purposes. Many current
compression schemes provide a very high compression rate but
with considerable loss of quality. On the other hand, in some
areas in medicine, it may be sufficient to maintain high image
quality only in the region of interest, i.e., in diagnostically
important regions. This paper discusses a hybrid model of
lossless compression in the region of interest, with high-rate,
motion-compensated, lossy compression in other regions. We
evaluate our method on medical CT images, and show that it
outperforms other common compression schemes, such as
discrete cosine transform, vector quantization, and principal
component analysis. In our experiments, we emphasize CT
imaging of the human colon.
Keywords - motion compensated coding, compression, region of
interest, colonoscopy

I. INTRODUCTION

Medical imaging has had a great impact on the diagnosis of
diseases and surgical planning. However, imaging devices
continue to generate more data per patient, often 1000 images
or ~500 MB. These data need long-term storage and efficient
transmission.

Current compression schemes produce high compression
rates if loss of quality is affordable. However, medicine
cannot afford any deficiency in diagnostically important
regions ('Region of Interest, ROI). An approach that brings a
high compression rate with good quality in the ROI is thus
necessary. A hybrid-coding scheme seems to be the only
solution to this twofold problem. The general theme is to
preserve quality in diagnostically critical regions, while
allowing lossily encoding the other regions. The main reason
for preserving regions other than ROI is to let the viewer
more easily locate the position of the critical regions in the
original image, and to evaluate possible interactions with
surrounding organs.

In this study, we put special emphasis on the human colon
wall. Colon cancer is the second leading cause of cancer
deaths in the USA. American adults have 1/20 chance of
developing and 1/40 chance of dying from this disease[19].
To our knowledge, however, this is one of the first studies
concerned with the compression of human colon CT data.
The main research in this area is on graphical visualization of
the colon and automatic colon cancer detection [11][12]. The
development of compression technology will also allow for
efficient use of visualization and automatic
detection techniques in human colon analysis.

After the evolution of digital imaging techniques, many
researchers have attempted to apply compression methods to
medical data. The initial emphasis was on information
preserving methods. Scan pixel difference was researched by
Takaya et al in [1]. Assche et a.l exploit the inter-frame
redundancy in [2]. Linear predictive coding schemes were

investigated in [3]. The lossless compression studies have all
resulted in low compression rate. Transform coding schemes
such as Principal Component Analysis (PCA) and Discrete
Cosine Transform (DCT) were applied in [4],[8] and [9] to
get better rates. In order to achieve higher compression rates
without detracting from quality, region of interest based
methods were investigated in the subsequent years. In [4], an
ROI-DCT algorithm that uses more DCT coefficients in ROI,
was proposed. Cosman et al. used a subband compression
scheme in [5] and [6] for application to mammography. In
[7], 3-D wavelet compression was investigated.

A 3D medical data set is a collection of 2D images,
henceforth called slices. The most important drawback of 3D
based approaches in ROI based compression is twofold. First,
the image quality along the three principal 3D axes is not
uniform, i.e. the resolution between the slices is much less
than the resolution within each slice. Second, the ROI does
not necessarily lie in a 3D primitive shape such as a cube. As
a consequence, a primitive 3D ROI would occupy a big
portion of the data, thereby deviating from our initial
objective of high compression rate. To address these
problems, a 2D ROI based scheme is explored in this paper.

On the other hand, there is a considerable amount of
correlation between consecutive slices. We propose to exploit
the consequent redundancy by using motion compensated
coding. We compare the performance of motion compensated
coding scheme with a number of lossy compression schemes
including DCT, PCA, and blockwise Vector Quantization
(VQ). Our results suggest that motion compensated coding is
more suitable than other methods for the compression of CT
abdomen images.

We propose a complete hybrid coder that uses a motion
compensated coder in the overall image and an entropy
minimizing, lossless coder for coding the error in the ROI
region. The first step of an ROI based system is
segmentation. In our application, the colon wall is segmented
through a sequence of 3-D morphological image processing
techniques. Next, motion vectors are coded for each block of
the image. Finally, the error between the real image and the
motion predicted image is coded for ROI blocks.

The paper continues as follows: Section II describes our
proposed hybrid solution. In Section III, a description of
investigated lossy and lossless compression schemes is given,
and the results are compared to our approach. Section IV
gives our conclusions and discusses possible future work.

Fig. 1. Flow diagram for ROI Compression
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Fig. 2. (a) ROI alone (b) ROI together with the other organs

Fig. 3. (a) Air segmented (b) Colon wall segmented (c) ROI

II. ROI BASED SYSTEM

This section describes a hybrid compression system for
lossless compression of ROI in CT abdomen images. The
overall flow of the system is given in Figure 1. The colon
wall is chosen as the region of interest. The first stage is the
segmentation of ROI. Here, we propose an automated
segmentation method that utilizes a series of 3-D
morphological operations as described in section A. Once the
ROI is segmented, the entire image is first coded by motion
compensated compression. The output of the motion
compensated coding acts as an initial approximation for ROI
areas. In ROI, an entropy minimizing, lossless coder encodes
the residual between this approximation and the original
image. The details of this compression stage are described in
section B. In this study, we have chosen not to discard the
non-ROI, but rather to highly compress it by motion
compensated coding. This helps the viewer locate the human
colon in the image since the shape of the colon is constrained
by the surrounding organs in the body. Figure 2(a) illustrates
the ROI alone, while Figure 2(b) shows ROI in the entire
image. In the latter case, the radiologist can more easily
identify the portions of the colon looking at the nearby organs
in the image.

A. Segmentation of ROI

Diagnostically critical region is given as about 5 pixels inside
and outside of the colon wall in typical CT scans. We would
like to add practical value to our system by automatically
segmenting this critical region. Our segmentation algorithm
relies on a 3-D extension of mathematical morphology, a
branch of science that is built upon set theory with many
application areas in image processing. It includes generation
of mappings for each pixel according to the pixel's local
neighborhood. Many researchers have used this technique to
segment biomedical images [14][15]. Segmenting the colon
from the CT data set consists of three steps:

- The air is separated away from the tissue by intensity
thresholding.

- The colon wall that surrounds the air is extracted by a

3D extension of Sobel’s derivative operation. [21]
- A morphological 3-D grassfire operation determines the
colon-wall region within the 5-pixel margin mentioned
above. This algorithm finds points that are at equal distance
from a layer of points.

The outputs of the three stages of segmentation are
depicted in figure 3. Each pixel in the segmented ROI is
coded in a lossless manner, while the rest is lossily
compressed. Figure 3(c) includes only a little portion of the
complete image in Figure 3(a), and this brings a considerable
amount of compression efficiency.

B. ROI Based Compression Scheme

Once the ROI is segmented in each slice, a hybrid
compression scheme is used for coding the images. The first
slice of the volume is compressed with a lossless coder. Each
slice is then coded by motion compensated coding, which
also acts as a prediction filter for ROI. Finally, the difference
between the real-image ROI block and the predicted-image
ROI block is coded by an entropy minimizing lossless coder,
e.g. Huffman coder[20].

Motion-compensated coding interprets the smooth
changes from one slice to the next as motion, and uses
displaced versions of blocks in one slice as approximations
for blocks in the next slice. More specifically, each slice is
first partitioned into uniform square blocks. Next, a motion
vector is determined for each block using the previous image
as a reference. In other words, for each block in the current
image, the most similar, nearby block from the previous
image is computed, and the difference in coordinates between
the two blocks is recorded as a translation vector with two
components: translation in x (dx) and translation in y (dy),
where x and y denote the two principal axes of the image. In
this research, we used the Lucas-Tomasi-Kanade optical flow
tracker [10]. This is an accurate method to track points from
one image to the other. It determines block motion by
minimizing the sum of pixel-wise squared differences
between a given block in the current image and neighboring
blocks in the previous image. Since there is a high correlation
between consecutive slices, the motion vectors are usually
very small, and can therefore be coded efficiently. The
estimation precision of the vectors dx and dy was 0.1 pixels.
Using a small accuracy assures that the difference between
the real and the estimated block has a lower energy. Indeed,
the better the accuracy of the algorithm, the better is the
estimation image, but the more complex is the encoder. Once
the translation vector is calculated, it is recorded to represent
the particular block. During this process, the motion vectors
are coded with an entropy minimizing lossless coder in order
to occupy fewer bits.

After the motion vector is predicted for every block in the
image, the root mean squared error (rmse) between the
original image block and the motion estimated block is
obtained. If the block contains pixels belonging to ROI or if
the rmse is higher than a threshold, then the difference block
is encoded with an additional entropy minimizing, lossless
coder. The theoretical entropy of the difference blocks was
calculated as 4.38 bpp (bits per pixel), which is better than
the theoretical entropy values of spatial or temporal



prediction filters, as described in Section 3. The efficiency of
the method is inversely proportional to the portion of ROI in
the image. The smaller the portion of ROI in the image, the
better is the resulting compression rate. In addition to its
remarkable compression gain, the algorithm is accurate, since
there is no degradation of diagnostic quality in ROI.

III. EXPERIMENTS

Before we give our results on the ROI based scheme, we
present a comparison study on different compression schemes
for exploiting the temporal and spatial redundancy in CT
abdomen images. This redundancy includes correlation
between and within slices of a CT volume.

First, we investigate theoretical entropy values for various
lossless prediction filters. Next, we compare the results for
the following lossy compression methods: Discrete Cosine
Transform (DCT), Principal Component Analysis (PCA),
blockwise Vector Quantization (VQ), and Motion
Compensated Coding. All of the experiments for these four
methods are performed on 20 CT abdomen slices of size 512
by 512 and with an original bit rate of 16 bpp. Figure 6 shows
the output image for each of these methods.

First, we would like to give theoretical bit rates for
lossless schemes. The entropy is computed as the expected
value of information in the image, viewed as a stream of
statistically uncorrelated pixel values. The theoretical entropy
of the intensity values of the CT abdomen images was found
to be 7.93 bpp. However, the assumption of statistical
uncorrelatedness inherent in the definition of entropy is
obviously false, since neighboring pixels within and across
slices are statistically correlated. First, to exploit the intra-
slice redundancy, a coding scheme that predicts the current
pixel as a linear combination of the west, north and northwest
pixels in the same image is used. With this scheme, the
entropy of the error falls to 5.9 bpp. Second, in order to get
even higher compression rates, the inter-slice, or temporal,
statistical dependency of the pixel values is considered.
Specifically, each image pixel value is predicted to be the
same pixel value as in the previous image, in which case the
entropy of the prediction error reduces further to 5.76 bpp.
This result shows that there is only slightly more temporal
redundancy than the spatial redundancy in CT abdomen
images. As discussed in Section 2, motion compensated
coding works as a better prediction scheme for temporal
redundancy avoidance, i.e., the entropy of the error image
reduces by a considerable amount to 4.38 bpp.

Next we evaluated three lossy compression schemes and
compared with motion compensated coding: The Discrete
Cosine Transform (DCT), Principal Component Analysis
(PCA) and Blockwise Vector Quantization. For DCT, we
applied 8x8 DCT matrix followed by uniform quantization of
transformed components[21]. We applied PCA by extracting
the principal modes of 8x8 image patches[8]. Finally, we
applied vector quantization on the intensity values of
centeroids of 8x8 or 16x16 blocks[18].

In order to judge the performances of the methods better,
we zoom into non-ROI portions of the image in Figure 4. It is
intuitive to observe that blockwise vector quantization results
in smoother images (Figures 4(e)). Although PCA

compression yields much worse rmse than DCT, the image
quality looks nearly as pleasing with DCT. Finally, Figures
4(f) show the sub-window resulting from motion
compensated coding. In this example, motion compensated
coding is coded with 25 times more coding efficiency than
DCT and PCA coding, yet the image quality looks as
pleasing.

Fig.4 (a) The main image. (b) original detail region (c-f) Analysis of a small
ROI region with different methods, specifically: (c)DCT with quantization
size 128. (d) PCA (e) Blockwise vector quantization (f) Motion estimated

coding.

Fig.5 Comparison of the methods.

TABLE I

Results of ROI Scheme

Experiment Rate(bpp) RMSE(dB)

ROI, Blocksize 8x8 –Dataset 1 0.41 30.8

ROI, Blocksize 16x16–Dataset 1 0.56 31.4

ROI, Blocksize 8x8 –Dataset 2 0.47 30.8

ROI, Blocksize 16x16–Dataset 2 0.63 31.0

ROI, Blocksize 8x8 –Dataset 3 0.52 32.0

ROI, Blocksize 16x16–Dataset 3 0.59 32.0

Motion compensated hybrid coding is the core of our ROI
based compression system. Figure 5 clearly demonstrates
that motion compensated coding outperforms the other
methods at the same rmse, and produces a bit rate as low as
0.018 bpp for an acceptable error level for coding the non-
ROI regions. This high performance let us choose motion
compensated coding as the prediction scheme in our system
design.

We applied our ROI based hybrid compression method to
three datasets of 20 slices each. 8 by 8 and 16 by 16
blocksizes were used in the experiments, and the results are
summarized in Table 1. Observe that ROI compression with 8



by 8 blocks produces not only a better rmse, but also better
compression rate compared to ROI compression with 16 by
16 blocks. This is mainly due to diminishing ratio of ROI
blocks when using 8 by 8 block-size. Figures 6(g) and (h)
show the reconstructed images for both blocksize. The ROI
based method with 8 by 8 blocks results in a compression rate
of 2.5% without any loss of image quality in ROI.

IV. CONCLUSION

In this study, we present a hybrid scheme that is
appropriate for efficient and accurate compression of 3D
medical images. The model uses lossless compression in the
region of interest, and very high-rate, lossy compression in
the other regions. There are two main contributions of the
paper: First, we have designed a compression scheme that
automatically segments and utilizes ROI in order to get
efficient and accurate results. Second, common compression
schemes have been applied to CT abdomen images and the
performances are compared. After surveying common
compression schemes, we have chosen motion-estimating
coding as a prediction scheme for each medical abdomen
slice. The difference between the ROI blocks and the
prediction is coded separately with an entropy minimizing
coder. We have applied our experiments on CT abdomen
images with the colon wall as ROI. The results show that a
compression rate of 2.5% can be obtained by our approach.

There are many possible directions for future investigation.
In order to obtain better compression rates, ROI can be
lossily encoded, i.e., by DCT compression. Future study will
include the design of lossy compression schemes in ROI and
a clinical case study with radiologists to observe the effect of
lossy compression on diagnostic performance.
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